7^2+7^2=c^2

Simple and best practice solution for 7^2+7^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2+7^2=c^2 equation:



7^2+7^2=c^2
We move all terms to the left:
7^2+7^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+98=0
a = -1; b = 0; c = +98;
Δ = b2-4ac
Δ = 02-4·(-1)·98
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*-1}=\frac{0-14\sqrt{2}}{-2} =-\frac{14\sqrt{2}}{-2} =-\frac{7\sqrt{2}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*-1}=\frac{0+14\sqrt{2}}{-2} =\frac{14\sqrt{2}}{-2} =\frac{7\sqrt{2}}{-1} $

See similar equations:

| 8-3x=3x+12 | | (2/3)x=(5/10) | | -n+4(n=1)= | | 8+3s=13 | | 18x^2-9x=2 | | =y798 | | k/2+10=20 | | 3/4=2/3m | | y=12(-2)=-2 | | 5(2x+3)-8x=17 | | 6y-30=4(y-6) | | y=12(-4)=-2 | | y=12(4)=-2 | | t5=6 | | -1/x^2=-x | | 3/5k-7.5=7.5 | | y=12(-2)=-4 | | 4^2+3^2=c^2 | | 7(2x-7)-7x=-23-6x | | y=12(-2)=-6 | | y=12(-2)+2 | | 8x-46=4x-10 | | 11x2-32x+17=20 | | 5r-(1/5)=(4/5) | | 3w-39=-9(w-5) | | 0.1760=3h•8 | | 8•3a=2a-1 | | 144=m-96 | | -6(x-5)=-9x+33 | | 16^(x-5)=5 | | 12-2x=8×x+4 | | 24^2+b^2=25^2 |

Equations solver categories